Zero Energy Scattering for One-dimensional Schrödinger Operators and Applications to Dispersive Estimates

نویسنده

  • IRYNA EGOROVA
چکیده

We show that for a one-dimensional Schrödinger operator with a potential, whose (j + 1)-th moment is integrable, the j-th derivative of the scattering matrix is in the Wiener algebra of functions with integrable Fourier transforms. We use this result to improve the known dispersive estimates with integrable time decay for the one-dimensional Schrödinger equation in the resonant case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decay Estimates for Four Dimensional Schrödinger, Klein-gordon and Wave Equations with Obstructions at Zero Energy

We investigate dispersive estimates for the Schrödinger operator H = −∆+V with V is a real-valued decaying potential when there are zero energy resonances and eigenvalues in four spatial dimensions. If there is a zero energy obstruction, we establish the low-energy expansion eχ(H)Pac(H) = O(1/(log t))A0 +O(1/t)A1 +O((t log t) )A2 +O(t (log t))A3. Here A0, A1 : L (R) → L∞(Rn), while A2, A3 are o...

متن کامل

Dispersive Estimates for Higher Dimensional Schrödinger Operators with Threshold Eigenvalues I: the Odd Dimensional Case

We investigate L(R) → L∞(Rn) dispersive estimates for the Schrödinger operator H = −∆ + V when there is an eigenvalue at zero energy and n ≥ 5 is odd. In particular, we show that if there is an eigenvalue at zero energy then there is a time dependent, rank one operator Ft satisfying ‖Ft‖L1→L∞ . |t|2− n 2 for |t| > 1 such that ‖ePac − Ft‖L1→L∞ . |t| 1−n 2 , for |t| > 1. With stronger decay condi...

متن کامل

Wave Operator Bounds for 1-dimensional Schrödinger Operators with Singular Potentials and Applications

Boundedness of wave operators for Schrödinger operators in one space dimension for a class of singular potentials, admitting finitely many Dirac delta distributions, is proved. Applications are presented to, for example, dispersive estimates and commutator bounds.

متن کامل

Dispersive Estimates for Higher Dimensional Schrödinger Operators with Threshold Eigenvalues Ii: the Even Dimensional Case

We investigate L(R) → L∞(Rn) dispersive estimates for the Schrödinger operator H = −∆ + V when there is an eigenvalue at zero energy in even dimensions n ≥ 6. In particular, we show that if there is an eigenvalue at zero energy then there is a time dependent, rank one operator Ft satisfying ‖Ft‖L1→L∞ . |t|2− n 2 for |t| > 1 such that ‖ePac − Ft‖L1→L∞ . |t| 1−n 2 , for |t| > 1. With stronger dec...

متن کامل

Dispersive Estimates for Four Dimensional Schrödinger and Wave Equations with Obstructions at Zero Energy

We investigate L(R) → L∞(R4) dispersive estimates for the Schrödinger operator H = −∆ + V when there are obstructions, a resonance or an eigenvalue, at zero energy. In particular, we show that if there is a resonance or an eigenvalue at zero energy then there is a time dependent, finite rank operator Ft satisfying ‖Ft‖L1→L∞ . 1/ log t for t > 2 such that ‖ePac − Ft‖L1→L∞ . t , for t > 2. We als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015